Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 283, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880793

RESUMO

BACKGROUND: Lung cancer is the most common and deadliest cancer worldwide, and approximately 90% of all lung cancer deaths are caused by tumor metastasis. Tumor-derived exosomes could potentially promote tumor metastasis through the delivery of metastasis-related molecules. However, the function and underlying mechanism of exosomal long noncoding RNA (lncRNA) in lung cancer metastasis remain largely unclear. METHODS: Cell exosomes were purified from conditioned media by differential ultracentrifugation and observed using transmission electron microscopy, and the size distributions were determined by nanoparticle tracking analysis. Exosomal lncRNA sequencing (lncRNA-seq) was used to identify long noncoding RNAs. Cell migration and invasion were determined by wound-healing assays, two-chamber transwell invasion assays and cell mobility tracking. Mice orthotopically and subcutaneously xenografted with human cancer cells were used to evaluate tumor metastasis in vivo. Western blot, qRT‒PCR, RNA-seq, and dual-luciferase reporter assays were performed to investigate the potential mechanism. The level of exosomal lncRNA in plasma was examined by qRT‒PCR. MS2-tagged RNA affinity purification (MS2-TRAP) assays were performed to verify lncRNA-bound miRNAs. RESULTS: Exosomes derived from highly metastatic lung cancer cells promoted the migration and invasion of lung cancer cells with low metastatic potential. Using lncRNA-seq, we found that a novel lncRNA, lnc-MLETA1, was upregulated in highly metastatic cells and their secreted exosomes. Overexpression of lnc-MLETA1 augmented cell migration and invasion of lung cancer. Conversely, knockdown of lnc-MLETA1 attenuated the motility and metastasis of lung cancer cells. Interestingly, exosome-transmitted lnc-MLETA1 promoted cell motility and metastasis of lung cancer. Reciprocally, targeting lnc-MLETA1 with an LNA suppressed exosome-induced lung cancer cell motility. Mechanistically, lnc-MLETA1 regulated the expression of EGFR and IGF1R by sponging miR-186-5p and miR-497-5p to facilitate cell motility. The clinical datasets revealed that lnc-MLETA1 is upregulated in tumor tissues and predicts survival in lung cancer patients. Importantly, the levels of exosomal lnc-MLETA1 in plasma were positively correlated with metastasis in lung cancer patients. CONCLUSIONS: This study identifies lnc-MLETA1 as a critical exosomal lncRNA that mediates crosstalk in lung cancer cells to promote cancer metastasis and may serve as a prognostic biomarker and potential therapeutic target for lung cancer diagnosis and treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimento Celular/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor IGF Tipo 1/genética
2.
Sci Total Environ ; 904: 166799, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673270

RESUMO

Airborne antibiotic-resistant bacteria (ARB) can critically impact human health. We performed resistome profiling of 283 personal airborne exposure samples from 15 participants spanning 890 days and 66 locations. We found a greater diversity and abundance of airborne bacteria community and antibiotic resistomes in spring than in winter, and temperature contributed largely to the difference. A total of 1123 bacterial genera were detected, with 16 genera dominating. Of which, 7/16 were annotated as major antibiotic resistance gene (ARG) hosts. The participants were exposed to a highly dynamic collection of ARGs, including 322 subtypes conferring resistance to 18 antibiotic classes dominated by multidrug, macrolide-lincosamide-streptogramin, ß-lactam, and fosfomycin. Unlike the overall community-level bacteria exposure, an extremely high abundance of specific ARG subtypes, including lunA and qacG, were found in some samples. Staphylococcus was the predominant genus in the bacterial community, serving as a primary bacterial host for the ARGs. The annotation of ARG-carrying contigs indicated that humans and companion animals were major reservoirs for ARG-carrying Staphylococcus. This study contextualized airborne antibiotic resistomes in the precision medicine framework through longitudinal personal monitoring, which can have broad implications for human health.


Assuntos
Antibacterianos , Genes Bacterianos , Humanos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias
3.
Cancer Cell Int ; 23(1): 207, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726816

RESUMO

BACKGROUND: Lung cancer has the highest mortality rate in the world, and mounting evidence suggests that cancer stem cells (CSCs) are associated with poor prognosis, recurrence, and metastasis of lung cancer. It is urgent to identify new biomarkers and therapeutic targets for targeting lung CSCs. METHODS: We computed the single-sample gene set enrichment analysis (ssGSEA) of 1554 Reactome gene sets to identify the mRNA expression-based stemness index (mRNAsi)-associated pathways using the genome-wide RNA sequencing data of 509 patients from The Cancer Genome Atlas (TCGA) cohort of lung adenocarcinoma (LUAD). Phenotypic effects of ubiquitin-specific peptidase 5 (USP5) on the CSC-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Cycloheximide chase assay, co-immunoprecipitation assay, and deubiquitination assay were performed to confirm the effect of USP5 on the deubiquitination of ß-catenin. RESULTS: We demonstrated that USP5 expression were positively correlated with the stemness-associated signatures and poor outcomes in lung cancer specimens. Silencing of endogenous USP5 reduced CSC-like characteristics, epithelial-mesenchymal transition (EMT), and metastasis in vitro and in vivo. Furthermore, USP5 interacted with ß-catenin, which resulted in deubiquitination, stabilization of ß-catenin, and activation of Wnt/ß-catenin pathway. Accordingly, expression of USP5 was positively correlated with the enrichment score of the Wnt/TCF pathway signature in human lung cancer. Silencing of ß-catenin expression suppressed USP5-enhancing sphere formation. Targeting USP5 with the small molecule WP1130 promoted the degradation of ß-catenin, and showed great inhibitory effects on sphere formation, migration, and invasion. Finally, we identified a poor-prognosis subset of tumors characterized by high levels of USP5, Wnt signaling score, and Stemness score in both TCGA-LUAD and Rousseaux_2013 datasets. CONCLUSIONS: These findings reveal a clinical evidence for USP5-enhanced Wnt/ß-catenin signaling in promoting lung cancer stemness and metastasis, implying that targeting USP5 could provide beneficial effects to improve lung cancer therapeutics.

4.
Antimicrob Resist Infect Control ; 12(1): 82, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612738

RESUMO

OBJECTIVE: The aim of this study was to describe the time series of broad-spectrum antibiotic utilisation and incidence of antibiotic-resistant organisms during the implementation of antimicrobial stewardship programmes (ASP) in Singapore. METHODS: An observational study was conducted using data from 2011 to 2020 in seven acute-care public hospitals. We applied joinpoint regressions to investigate changes in antibiotic utilisation rate and incidence density of antibiotic-resistant organisms. RESULTS: Across the seven hospitals, quarterly broad-spectrum antibiotic utilisation rate remained stable. Half-yearly incidence density of antibiotic-resistant organisms with two joinpoints at first half (H1) of 2012 and second half (H2) of 2014 decreased significantly in the second and third period with a half-yearly percentage change (HPC) of -2.9% and - 0.5%, respectively. Across the five hospitals with complete data, half-yearly broad-spectrum antibiotic utilisation rate with one joinpoint decreased significantly from H1 of 2011 to H2 of 2018 (HPC - 4.0%) and H2 of 2018 to H2 2020 (HPC - 0.5%). Incidence density of antibiotic-resistant organisms decreased significantly in the two joinpoint periods from H1 of 2012 to H2 of 2014 (HPC - 2.7%) and H2 of 2014 to H2 of 2020 (HPC - 1.0%). Ceftriaxone with one joinpoint decreased significantly from H1 of 2011 to H1 of 2014 (HPC - 6.0%) and H1 of 2014 to H2 of 2020 (HPC - 1.8%) and ceftriaxone-resistant E. coli and K. pneumoniae decreased significantly in later periods, from H2 of 2016 to H2 of 2020 (HPC - 2.5%) and H1 of 2012 to H2 of 2015 (HPC - 4.6%) respectively. Anti-pseudomonal antibiotics with one joinpoint decreased significantly from H1 of 2011 to H2 of 2014 (HPC - 4.5%) and H2 of 2014 to H2 of 2020 (HPC - 0.8%) and that of quinolones with one joinpoint at H1 of 2015 decreased significantly in the first period. C. difficile with one joinpoint increased significantly from H1 of 2011 to H1 of 2015 (HPC 3.9%) and decreased significantly from H1 of 2015 to H2 of 2020 (HPC - 4.9%). CONCLUSIONS: In the five hospitals with complete data, decrease in broad-spectrum antibiotic utilisation rate was followed by decrease in incidence density of antibiotic-resistant organisms. ASP should continue to be nationally funded as a key measure to combat antimicrobial resistance in acute care hospitals.


Assuntos
Gestão de Antimicrobianos , Clostridioides difficile , Humanos , Antibacterianos/uso terapêutico , Ceftriaxona , Escherichia coli , Singapura/epidemiologia , Hospitais Públicos , Klebsiella pneumoniae
5.
Am J Cancer Res ; 13(1): 176-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777515

RESUMO

CASZ1, a zinc finger transcription factor with two isoforms, is known to play important roles in cardiac and neural development. The abnormal expression of CASZ1 is also frequently found in a variety of tumors but has different effects on different tumors; for example, it acts as a tumor suppressor in neuroblastoma but promotes cancer metastasis in ovarian cancer. However, the effect of CASZ1 in lung cancer, the most lethal cancer, remains unclear. Here, we found that the expression of CASZ1 in lung cancer is positively associated with cancer metastasis and poor prognosis. The overexpression of CASZ1b promotes lung cancer cell migration, invasion, and epithelial-mesenchymal transition and is associated with poor prognosis in lung cancer patients. The knockdown of CASZ1 resulted in the suppression of epithelial-mesenchymal transition, migration, and invasion of lung cancer cells and reduced metastasis in vivo. The results of an RNA-sequencing analysis of CASZ1-silenced cells showed that CASZ1 considerably affected the integrin-mediated pathways. CASZ1 bound to the ITGAV promoter and transcriptionally regulated ITGAV expression. Our findings demonstrate that CASZ1 plays an oncogenic role in lung cancer and that CASZ1 promotes lung cancer migration, invasion and metastasis is mediated by ITGAV.

6.
J Exp Clin Cancer Res ; 42(1): 40, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737832

RESUMO

BACKGROUND: Lymph node and distant metastasis contribute to poor outcomes in patients with oral squamous cell carcinoma (OSCC). The mechanisms regulating cancer migration and invasion play a key role in OSCC. METHODS: We determined migration and invasion ability of OSCC by wound-healing assay, two-chamber transwell invasion assay and cell mobility tracking and evaluated tumor metastasis in vivo. Western blot (WB), qRT-PCR, RNA-seq, dual-luciferase reporter assays and nuclear/cytoplasmic fractionation were performed to investigate the potential mechanism. Immunohistochimical (IHC) staining determined vimentin and PDZK1IP1 expression in OSCC tissues. RESULTS AND CONCLUSION: In this study, we determined that miR-455-5p was associated with lymph node metastasis and clinical invasion, leading to poor outcomes in patients with OSCC. MiR-455-5p promoted oral cancer cell migration and invasion and induced epithelial-to-mesenchymal transition (EMT). We also identified a new biomarker, PDZK1IP1 (MAP17), that was targeted by miR-455-5p. PDZK1IP1 knockdown led to migration, metastasis, EMT, and increased transforming growth factor-ß signaling in OSCC. In addition, miR-455-5p overexpression and PDZK1IP1 inhibition promoted collective OSCC cell migration. According to data from the Cancer Genome Atlas database and the NCKU-OrCA-40TN data set, miR-455-5p and PDZK1IP1 are positively and negatively correlated, respectively, with partial EMT score. High miR-455-5p expression was associated with high vimentin levels and low MAP17 H-scores. The patients with low MAP17 expression had higher rates of disease recurrence than did patients with high MAP17 expression, especially for patients with clinical invasion risk factors and low MAP17 expression. These results suggest that miR-455-5p suppresses PDZK1IP1 expression and mediates OSCC progression. MiR-455-5p and PDZK1IP1 may therefore serve as key biomarkers and be involved in regulating partial EMT in OSCC cells. PDZK1IP1 expression may also serve as an independent factor that impacts outcomes in patients with clinical risk factors for recurrence.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Vimentina/genética , Vimentina/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Recidiva Local de Neoplasia/genética , Biomarcadores , Neoplasias de Cabeça e Pescoço/genética , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo
7.
Sci Total Environ ; 839: 156313, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654190

RESUMO

The wastewater treatment processes (WTP) on pig farms are heavily contaminated by antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) play an important role in shaping ARG profiles. Here we first employed metagenomic sequencing to follow the diversities and shifts of ARG associated mobile genetic elements (AAMGEs) including insertion sequences (ISs) and plasmids along the WTP for three pig farms in southeast China. The IS average relative abundance rose from the initial pig feces source to the wastewater storage lagoon (WSL) but decreased in the influent and rose in the effluent of the anaerobic digestor (AD). In contrast, plasmids were eliminated rapidly along this process. These results indicated that the AD reduced plasmid copies while IS abundance increased. We found a great diversity ISs, including IS91, ISNCY, IS630 and IS701, were large contributors to the transfer of multi-drug resistance. In addition, the tetracycline resistance genes co-occurred with a greater diversity of ISs than other ARG classes and this likely contributed to the high abundance of tetracycline resistance genes we found. The transfer of ARGs mediated by MGEs along the WTP of pig farms was a key contributor for the ARGs persistence in the environment of pig farms. Collectively, our findings demonstrated different fates for ISs and plasmids along the WTP for pig farms and suggested that AAMGE monitoring served as an important role in controlling ARGs in pig waste.


Assuntos
Antibacterianos , Purificação da Água , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Fazendas , Genes Bacterianos , Sequências Repetitivas Dispersas , Suínos , Águas Residuárias
8.
BMC Emerg Med ; 22(1): 88, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596154

RESUMO

BACKGROUND: Overcrowding in emergency departments (ED) is a critical problem worldwide, and streaming can alleviate crowding to improve patient flows. Among triage scales, patients labeled as "triage level 3" or "urgent" generally comprise the majority, but there is no uniform criterion for classifying low-severity patients in this diverse population. Our aim is to establish a machine learning model for prediction of low-severity patients with short discharge length of stay (DLOS) in ED. METHODS: This was a retrospective study in the ED of China Medical University Hospital (CMUH) and Asia University Hospital (AUH) in Taiwan. Adult patients (aged over 20 years) with Taiwan Triage Acuity Scale level 3 were enrolled between 2018 and 2019. We used available information during triage to establish a machine learning model that can predict low-severity patients with short DLOS. To achieve this goal, we trained five models-CatBoost, XGBoost, decision tree, random forest, and logistic regression-by using large ED visit data and examined their performance in internal and external validation. RESULTS: For internal validation in CMUH, 33,986 patients (75.9%) had a short DLOS (shorter than 4 h), and for external validation in AUH, there were 13,269 (82.7%) patients with short DLOS. The best prediction model was CatBoost in internal validation, and area under the receiver operating cha racteristic curve (AUC) was 0.755 (95% confidence interval (CI): 0.743-0.767). Under the same threshold, XGBoost yielded the best performance, with an AUC value of 0.761 (95% CI: 0.742- 0.765) in external validation. CONCLUSIONS: This is the first study to establish a machine learning model by applying triage information alone for prediction of short DLOS in ED with both internal and external validation. In future work, the models could be developed as an assisting tool in real-time triage to identify low-severity patients as fast track candidates.


Assuntos
Alta do Paciente , Triagem , Adulto , Idoso , Serviço Hospitalar de Emergência , Humanos , Tempo de Internação , Aprendizado de Máquina , Estudos Retrospectivos
9.
Mol Ther Nucleic Acids ; 27: 956-968, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35211356

RESUMO

Cancer remains one of the leading causes of death worldwide. Cancer stem cells (CSCs) are the underlying reason for tumor recurrence, progression, and therapeutic resistance. Aptamers are synthetic single-stranded oligonucleotides that can specifically bind to various molecular targets. Here, we aim to develop an effective aptamer-based biomarker and therapeutic tool that targets CSCs for cancer therapy. We perform whole-cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) to screen DNA aptamers that specifically bound to lung CSCs, modeled by E-cadherin-silenced A549 cells. We develop a CSC-specific aptamer (AP-9R) specifically recognizing lung CSCs with high affinity and identify Annexin A2, a Ca2+-dependent membrane-binding protein, as its target. Annexin A2 expression was upregulated in lung CSCs and involved in cancer stemness. The expression of Annexin A2 was associated with signatures of stemness and metastasis, as well as poor clinical outcomes, in lung cancer in silico. Moreover, AP-9R decreased Annexin A2 expression and suppressed CSC properties in CSCs in vitro and in vivo. The present findings suggest that Annexin A2 is a CSC marker and regulator, and the CSC-specific aptamer AP-9R has potential theranostic applications for lung cancer.

10.
Theranostics ; 12(3): 1173-1186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154481

RESUMO

Background: The cytoskeletal linker protein α-Catulin has been shown to be important for tumor progression in various cancers. However, its role in the regulation of cancer stemness remains unclear. Methods: Phenotypic effects of α-Catulin on the cancer stem cell (CSC)-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Yeast two-hybrid assay, co-immunoprecipitation assay, and cycloheximide chase assay were performed to confirm the effect of α-Catulin on the WWP1-mediated degradation of KLF5. CPTAC and TCGA database were analyzed to determine the clinical association of α-Catulin, KLF5, and stemness-associated signatures in lung adenocarcinoma. Results: We report that α-Catulin increases cancer stem-like properties in non-small cell lung cancer (NSCLC). The expression of α-Catulin is elevated in tumor spheres compared to sphere-derived adherent cells and promotes the acquisition of cancer stemness characteristics in vitro and in vivo. Mechanistically, the interaction of α-Catulin and the C-terminal region of Kruppel-like transcription factor KLF5 results in the inhibition of WWP1-mediated degradation of KLF5. Accordingly, increased protein expression of KLF5 is observed in clinical specimens of lung adenocarcinoma with high expression of α-Catulin compared to specimens with low α-Catulin-expression. Knockdown of KLF5 abrogates α-Catulin-driven cancer stemness. α-Catulin is known to interact with integrin-linked kinase (ILK). Notably, an ILK inhibitor disrupts the α-Catulin-KLF5 interaction, promotes the degradation of KLF5, and decreases α-Catulin-driven cancer stemness. Importantly, we identify a CTNNAL1/ILK/KLF5 three-gene signature for predicting poor overall survival in patients with lung adenocarcinoma. Conclusions: These findings reveal a molecular basis of α-Catulin-enhanced KLF5 signaling and highlight a role for α-Catulin in promoting cancer stemness.


Assuntos
Adenocarcinoma de Pulmão , Fatores de Transcrição Kruppel-Like , Neoplasias Pulmonares , Ubiquitina-Proteína Ligases , alfa Catenina , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ubiquitina-Proteína Ligases/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
12.
Antibiotics (Basel) ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207584

RESUMO

PURPOSE: Antimicrobial resistant infections are common in patients on haemodialysis, often needing long courses of carbapenems. This results in a longer hospital stay and risk of iatrogenic complications. However, carbapenems can be given intermittently to allow for earlier discharge. We aim to describe the clinical outcomes of intermittent versus daily meropenem in stable, intermittently haemodialysed patients. METHODS: In total, 103 records were examined retrospectively. Data collected include demographics, clinical interventions and outcomes such as hospital length of stay (LOS), 30-day readmission rates and adverse events. FINDINGS: Mean age 61.6 ± 14.2 years, 57.3% male. Most common bacteria cultured were Klebsiella pneumoniae (16.5%). The most common indication was pneumonia (27.2%). Mean duration of therapy on meropenem was 12.4 ± 14.4 days; eight patients needed more than 30 days of meropenem. In total, 55.3% did not have intervention for source control; 86.4% received daily dosing of meropenem; 7.8% patients received intermittent dosing of meropenem only, and 5.8 patients received both types of dosing regimens. LOS of the index admission was shorter for the intermittent arm (15.5 ± 7.6 days versus daily: 30.2 ± 24.5 days), though 30-day readmission was higher (50% versus daily: 38.2%). IMPLICATIONS: We recommend further rigorous randomised controlled trials to investigate the clinical utility of intermittent meropenem dosing in patients on stable haemodialysis.

13.
Theranostics ; 10(19): 8903-8923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754286

RESUMO

The loss of cancer-cell junctions and escape from the primary-tumor microenvironment are hallmarks of metastasis. A tight-junction protein, Claudin 1 (CLDN1), is a metastasis suppressor in lung adenocarcinoma. However, as a metastasis suppressor, the underlying molecular mechanisms of CLDN1 has not been well studied. Methods: The signaling pathway regulated by CLDN1 was analyzed by Metacore software and validated by immunoblots. The effect of the CLDN1-EPHB6-ERK-SLUG axis on the formation of cancer stem-like cells, drug resistance and metastasis were evaluated by sphere assay, aldefluor assay, flow cytometry, migration assay, cytotoxicity, soft agar assay, immunoprecipitation assay and xenograft experiments. Furthermore, the methylation-specific PCR, pyrosequencing assay, chromatin immunoprecipitation and reporter assay were used to study the epigenetic and RUNX3-mediated CLDN1 transcription. Finally, the molecular signatures of RUNX3/CLDN1/SLUG were used to evaluate the correlation with overall survival by using gene expression omnibus (GEO) data. Results: We demonstrated that CLDN1 repressed cancer progression via a feedback loop of the CLDN1-EPHB6-ERK1/2-SLUG axis, which repressed metastasis, drug resistance, and cancer stemness, indicating that CLDN1 acts as a metastasis suppressor. CLDN1 upregulated the cellular level of EPHB6 and enhanced its activation, resulting in suppression of ERK1/2 signaling. Interestingly, DNA hypermethylation of the CLDN1 promoter abrogated SLUG-mediated suppression of CLDN1 in low-metastatic cancer cells. In contrast, the histone deacetylase inhibitor trichostatin A or vorinostat facilitated CLDN1 expression in high-metastatic cancer cells and thus increased the efficacy of chemotherapy. Combined treatment with cisplatin and trichostatin A or vorinostat had a synergistic effect on cancer-cell death. Conclusions: This study revealed that DNA methylation maintains CLDN1 expression and then represses lung cancer progression via the CLDN1-EPHB6-ERK1/2-SLUG axis. Because CLDN1 enhances the efficacy of chemotherapy, CLDN1 is not only a prognostic marker but a predictive marker for lung adenocarcinoma patients who are good candidates for chemotherapy. Forced CLDN1 expression in low CLDN1-expressing lung adenocarcinoma will increase the chemotherapy response, providing a novel therapeutic strategy.


Assuntos
Adenocarcinoma de Pulmão/genética , Cisplatino/farmacologia , Claudina-1/genética , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/genética , Receptores da Família Eph/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Análise de Sequência de DNA , Microambiente Tumoral , Vorinostat/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Antibiotics (Basel) ; 9(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531880

RESUMO

Antimicrobial resistance among uropathogens is a particularly pressing problem in the Asia-Pacific region. The objectives of this study were to determine the incidence and susceptibility of uropathogens upon hospital admission and to develop a risk-scoring model to predict the presence of ceftriaxone-resistance uropathogens (CrP). This was a retrospective observational cohort study of patients with a positive urine culture within 48 h of presentation at National University Hospital, Singapore between June 2015 and August 2015. Escherichia coli was the most common uropathogen isolated (51.7%), followed by Klebsiella pneumonia (15.1%) and Pseudomonas aeruginosa (8.2%). Overall, 372 out of 869 isolates (42.8%) were resistant to ceftriaxone. Hospitalization for ≥2 days within past 30 days, antibiotic use within the past 3 months and male gender were associated with the presence of CrP. A risk score based on these parameters successfully predicted CrP with an area under the curve of 0.68. The risk score will help clinicians to accurately predict antibiotic resistance at the individual patient level and allow physicians to safely prescribe empiric ceftriaxone in patients at low risk of CrP, thus reducing the antibiotic selection pressure that is driving carbapenem resistance in hospitals throughout Asia.

15.
Oncogene ; 39(4): 862-876, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570789

RESUMO

Treatment of ovarian cancer (OvCa) remains challenging owing to its high recurrence rates. Detachment of cancer cells into the peritoneal fluid plays a key role in OvCa relapse, but how this occurs remains incompletely understood. Here we examined global miRNA expression profiles of paired primary/recurrent OvCa specimens and identified a novel biomarker, microRNA-150-5p (miR-150-5p), that was significantly upregulated in 16 recurrent OvCa tissues compared with their matched primary specimens. Analyses of cohorts from two other groups confirmed that expression of miR-150-5p was associated with early relapse and poor survival of OvCa patients. Inhibition of miR-150-5p significantly inhibited the migration and invasion of OvCa cells and induced a mesenchymal-epithelial transition (MET) phenotype. We demonstrated that the proto-oncogene, MYB, is an miR-150-5p target in OvCa cells and that the miR-150-5p/c-Myb/Slug axis plays important roles in regulating epithelial-mesenchymal transition (EMT) in OvCa cells. Expression of MYB was significantly correlated with good clinical outcome in OvCa and was negatively correlated with Slug expression in late-stage clinical specimens. These results suggest that miR-150-5p upregulation mediates the progression of recurrent OvCa by targeting the c-Myb/Slug pathway. Inhibition of miR-150-5p may serve as a new therapeutic strategy for preventing recurrence of OvCa.


Assuntos
Biomarcadores Tumorais/genética , Movimento Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal , Feminino , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Taxa de Sobrevida , Regulação para Cima
16.
Int J Antimicrob Agents ; 55(2): 105860, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841674

RESUMO

INTRODUCTION: AmpC ß-lactamases are found in Enterobacter species, Serratia species, Citrobacter freundii, Providencia species and Morganella morganii ('ESCPM'). Carbapenems are commonly used to treat severe 'ESCPM' infections. Carbapenem-sparing agents are needed because of increasing carbapenem resistance worldwide. Use of cefepime and piperacillin-tazobactam has limited supportive clinical data. We evaluated the efficacy of non-carbapenems vs. carbapenems in 'ESCPM' bacteraemia. METHODS: A retrospective cohort study was conducted on patients with 'ESCPM' bacteraemia. Primary outcome was 30-day mortality. Analyses were performed on patients who received carbapenems vs. piperacillin-tazobactam or cefepime monotherapy as empirical and definitive therapy. Propensity score for carbapenem therapy was adjusted for in multivariate analyses for 30-day mortality. RESULTS: A total of 241 patients were included. The most common bacterium isolated was Enterobacter species (58.1%). Common sources were urinary (22.8%) and vascular lines (22.0%). Carbapenems (28.6%) and piperacillin-tazobactam (28.6%) were the commonest empirical antibiotics. Carbapenems (54.8%) and cefepime (23.7%) were the most common definitive antibiotics. Median Pitt bacteraemia score was 1 (interquartile range [IQR], 0-2). Overall, 30-day mortality was 12.9%. Adjusted multivariate analyses for empirical and definitive antibiotic treatment models yielded risk factors for 30-day mortality, including higher Pitt bacteraemia score (empirical: adjusted OR [aOR] 1.21 for each point increase, 95% confidence interval [CI]:1.01-1.45; definitive: aOR 1.33 for each point increase, 95% CI:1.06-1.69) and age (empirical: aOR 1.04 for each year increase, 95% CI:1.01-1.08). Empirical piperacillin-tazobactam (aOR 0.29, 95% CI:0.07-1.27) and definitive cefepime (aOR 0.65, 95% CI:0.12-3.55) were not associated with 30-day mortality. CONCLUSIONS: Compared with carbapenem therapy, empirical piperacillin-tazobactam and definitive cefepime were not associated with 30-day mortality in 'ESCPM' bacteraemia.


Assuntos
Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Cefepima/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico , Combinação Piperacilina e Tazobactam/uso terapêutico , Inibidores de beta-Lactamases/uso terapêutico , Idoso , Bacteriemia/tratamento farmacológico , Proteínas de Bactérias/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , beta-Lactamases/genética
17.
Mol Ther Nucleic Acids ; 18: 991-998, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31778957

RESUMO

Galectin-1 (Gal-1) is a pleiotropic homodimeric ß-galactoside-binding protein with a single carbohydrate recognition domain. It has been implicated in several biological processes that are important during tumor progression. Several lines of evidence have indicated that Gal-1 is involved in cancer immune escape and induces T cell apoptosis. These observations all emphasized Gal-1 as a novel target for cancer immunotherapy. Here, we developed a novel Gal-1-targeting DNA aptamer (AP-74 M-545) and demonstrated its antitumor effect by restoring immune function. AP-74 M-545 binds to Gal-1 with high affinity. AP-74 M-545 targets tumors in murine tumor models but suppresses tumor growth only in immunocompetent C57BL/6 mice, not in immunocompromised non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Immunohistochemistry revealed increased CD4+ and CD8+ T cells in AP-74 M-545-treated tumor tissues. AP-74 M-545 suppresses T cell apoptosis by blocking the binding of Gal-1 to CD45, the main receptor and apoptosis mediator of Gal-1 on T cells. Collectively, our data suggest that the Gal-1 aptamer suppresses tumor growth by blocking the interaction between Gal-1 and CD45 to rescue T cells from apoptosis and restores T cell-mediated immunity. These results indicate that AP-74 M-545 may be a potential strategy for cancer immunotherapy.

18.
J Exp Clin Cancer Res ; 38(1): 282, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262325

RESUMO

BACKGROUND: Lung cancer is the most common cause of cancer-related mortality worldwide despite diagnostic improvements and the development of targeted therapies, notably including epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). The phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) signaling has been shown to contribute to tumorigenesis, tumor progression, and resistance to therapy in most human cancer types, including lung cancer. Here, we explored the therapeutic effects of co-inhibition of PI3K and mTOR in non-small-cell lung cancer (NSCLC) cells with different EGFR status. METHODS: The antiproliferative activity of a dual PI3K/mTOR inhibitor BEZ235 was examined by the WST-1 assay and the soft agar colony-formation assay in 2 normal cell lines and 12 NSCLC cell lines: 6 expressing wild-type EGFR and 6 expressing EGFR with activating mutations, including exon 19 deletions, and L858R and T790 M point mutations. The combination indexes of BEZ235 with cisplatin or an EGFR-TKI, BIBW2992 (afatinib), were calculated. The mechanisms triggered by BEZ235 were explored by western blotting analysis. The anti-tumor effect of BEZ235 alone or combined with cisplatin or BIBW2992 were also studied in vivo. RESULTS: BEZ235 suppressed tumor growth in vitro and in vivo by inducing cell-cycle arrest at G1 phase, but without causing cell death. It also reduced the expression of cyclin D1/D3 by regulating both its transcription and protein stability. Moreover, BEZ235 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells by enhancing or prolonging DNA damage and BIBW2992-induced apoptosis in EGFR-TKI-resistant NSCLC cells containing a second TKI-resistant EGFR mutant. CONCLUSIONS: The dual PI3K/mTOR inhibition by BEZ235 is an effective antitumor strategy for enhancing the efficacy of chemotherapy or targeted therapy, even as a monotherapy, to restrict tumor growth in lung cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imidazóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células A549 , Afatinib/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cisplatino/uso terapêutico , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina D3/genética , Ciclina D3/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
19.
Am J Cancer Res ; 6(6): 1253-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429842

RESUMO

Epithelial ovarian cancer (EOC) carries the highest mortality rate of all gynecologic malignancies. This high mortality rate is attributed to the fact that most cases of ovarian cancer are detected at late stages when metastases are already present. Through microarray analysis, we previously demonstrated that castor zinc finger 1 (CASZ1) is up-regulated in EOC cells. In contrast to its role in EOC, CASZ1 functions a tumor suppressor in neuroblastoma. Human CASZ1 is predominantly expressed in 2 alternatively spliced isoforms: CASZ1a and CASZ1b. In the present study, we investigated the role of CASZ1 in ovarian cancer cell migration and invasion and assessed the value of CASZ1 expression as a prognostic indicator of metastasis in human ovarian cancer. We used a lentivirus expressing CASZ1-shRNA and a plasmid expressing CASZ1 from a CMV promoter to knockdown and overexpress CASZ1, respectively, in the MCAS, RMUG-S, TOV21G, and A2780(CP70) ovarian cancer cell lines. mRNA expression levels in tumor tissues and cell lines were measured using quantitative real-time PCR, and CASZ1 protein expression in EOC and paired metastatic tumor tissues was analyzed using immunohistochemistry. We found that CASZ1 was highly expressed in EOC tissues and ovarian cancer cell lines and that CASZ1 knockdown suppressed cell migration and invasion in EOC cells. CASZ1a and CASZ1b exerted similar effects on cell migration and invasion in EOC cells. In addition, CASZ1 promoted the epithelial-mesenchymal transition in EOC cells, and CASZ1 knockdown suppressed cancer metastasis in vivo. Furthermore, CASZ1 protein levels were elevated in human metastatic ovarian tumor tissues. Together, these results indicate that CASZ1 is a novel promoter of EOC metastasis and is highly up-regulated in metastatic EOC tumors.

20.
Oncotarget ; 7(39): 62925-62938, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-26910837

RESUMO

Ovarian clear cell carcinoma (OCCC) is an aggressive neoplasm with a high recurrence rate that frequently develops resistance to platinum-based chemotherapy. There are few prognostic biomarkers or targeted therapies exist for patients with OCCC. Here, we identified that FXYD2, the modulating subunit of Na+/K+-ATPases, was highly and specifically expressed in clinical OCCC tissues. The expression levels of FXYD2 were significantly higher in advanced-stage of OCCC and positively correlated with patients' prognoses. Silencing of FXYD2 expression in OCCC cells inhibited Na+/K+-ATPase enzyme activity and suppressed tumor growth via induction of autophagy-mediated cell death. We found that high FXYD2 expression in OCCC was transcriptionally regulated by the transcriptional factor HNF1B. Furthermore, up-regulation of FXYD2 expression significantly increased the sensitivity of OCCC cells to cardiac glycosides, the Na+/K+-ATPase inhibitors. Two cardiac glycosides, digoxin and digitoxin, had a great therapeutic efficacy in OCCC cells in vitro and in vivo. Taken together, our results demonstrate that FXYD2 is functionally upregulated in OCCC and may serve as a promising prognostic biomarker and therapeutic target of cardiac glycosides in OCCC.


Assuntos
Adenocarcinoma de Células Claras/metabolismo , Glicosídeos Cardíacos/farmacologia , Neoplasias Ovarianas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Adenocarcinoma de Células Claras/patologia , Autofagia , Biomarcadores Tumorais/metabolismo , Morte Celular , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Ovarianas/patologia , Prognóstico , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...